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Abstract Introduction: The clinical significance of ventriculomegaly in cognitively normal elderly individ-
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Methods: We selected cognitively normal individuals (n5 425) from the Alzheimer’s Disease Neu-
roimaging Initiative database and calculated Evans index (EI) based on the ratio of the frontal horn
and skull diameter. We defined ventriculomegaly as EI � 0.30, and the participants were stratified
into EI� 0.30 group and EI, 0.30 group. Neuropsychological, imaging, and fluid biomarker profiles
between the two groups were then compared using regression models.
Results: Atotal of 96 (22.5%) individualswhohadventriculomegaly performedworseon the cognitive
tests; showed smaller hippocampal volume but larger caudate, cingulate, and paracentral gyrus vol-
umes; anddisplayed lower positronemission tomography [18F]fluorodeoxyglucose standardizeduptake
value ratio but higher amyloid burden represented by higher [18F]florbetapir standardized uptake value
ratio and lower cerebrospinal fluid amyloid b 1–42 levels compared to thosewithout ventriculomegaly.
Discussion: Asymptomatic ventriculomegaly might be an early imaging signature of preclinical
Alzheimer’s disease and/or normal pressure hydrocephalus.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Ventriculomegaly; Neuropsychological test; Biomarker; Alzheimer’s disease; Idiopathic normal pressure
hydrocephalus
t: The authors have no conflicts of interest to report.

eparation of this article were obtained from the

Neuroimaging Initiative (ADNI) database (adni.loni.

nvestigators within the ADNI contributed to the design

ADNI and/or provided data but did not participate in

this report. A complete listing of ADNI investigators

http://adni.loni.usc.edu/wp-content/uploads/how_to_

ledgement_List.pdf.

thor. Tel.: 11(514)7616131 ext 6302; Fax:11(514)

rge.gauthier@mcgill.ca

16/j.dadm.2017.08.001

he Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).

aded for Anonymous User (n/a) at University of Southern California
For personal use only. No other uses without permission. C
1. Introduction

Ventriculomegaly, defined as the enlargement of cerebral
ventricles, is an objective and sensitive neuropathological
feature associated with mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) [1,2]. Theoretically,
ventriculomegaly can be caused by either two different
pathophysiological processes: brain atrophy or
hydrocephalus. The former is commonly observed in AD
and other neurodegenerative diseases, often in the
advanced stages and sometimes in mild stage [2–4]. The
latter can be due to congenital [5] or adult hydrocephalus
imer’s Association. This is an open access article under the CC BY-NC-ND
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[6], which has more cerebrospinal fluid (CSF) in ventricles.
In MCI and AD studies, ventriculomegaly is commonly
attributed to brain atrophy due to neuronal loss [2–4]. With
the wide use of computed tomography (CT) and magnetic
resonance imaging (MRI) brain scans in clinical practice,
ventriculomegaly has been increasingly observed in
cognitively normal individuals, especially in elders.
However, the clinical significance of the incidental finding
of ventriculomegaly in asymptomatic individuals remains
elusive.

Here, we stratified cognitively normal individuals into
two groups, the presence or absence of ventriculomegaly us-
ing the Evan’s index (EI) � 0.30 [7] and investigated the
neuropsychological and biomarker characteristics of ventri-
culomegaly in cognitively asymptomatic subjects.
2. Methods

2.1. Study sample

Data used in preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, positron
emission tomography (PET), biological markers, and clin-
ical and neuropsychological assessments can be combined
to measure the progression of MCI and early AD. Further in-
formation can be found at http://www.adni-info.org. The
ADNI also recruits cognitively normal participants with reg-
ular follow-up for neuropsychological assessments, neuroi-
maging such as MRI, [18F]fluorodeoxyglucose (FDG) and
[18F]florbetapir PET scans, as well as CSF evaluations for
amyloid b 1–42 (Ab1–42), total tau (t-tau), and phosphory-
lated tau (p-tau).

In this study, we selected cognitively normal individuals
who had baseline Clinical Dementia Rating (CDR) testing,
Mini-Mental Status Examination (MMSE), Montreal cogni-
tive test (MoCA), neuropsychological battery, MRI, lumbar
puncture, [18F]FDG and [18F]florbetapir PET imaging. We
defined cognitively normal individuals as those with a
MMSE score of �24, CDR 5 0, and absence of any neuro-
psychiatric diseases such as depression, MCI, and dementia.

2.2. Standard protocol approvals, registrations, and
patient consents

TheADNI studywas approved by the Institutional Review
Boards of all the participating institutions. Informed written
consent was obtained from all participants at each site.

2.3. Measurement of frontal horn diameter and skull
diameter and calculate EI

Images downloaded fromADNI databasewere transformed
to the Montreal Neurological Institute space using six-
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parameter affine transformations preserving the structural het-
erogeneities. The measurements of the frontal horn and the
skull were acquired by an expert neurologist using the image
visualization software JIV2 (http://www.bic.mni.mcgill.ca/
ServicesSoftwareVisualization/JIV2). The maximum diameter
of the frontal horns of the lateral ventricles (LVs) and the
maximum inner diameter of the skull in the same section
were recorded in millimeter. EI was calculated as the ratio be-
tween the maximum diameter of the frontal horns of the LVs
and the maximum inner diameter of the skull in the same sec-
tion. This index has been widely accepted as an indicator of
enlargement of cerebral ventricles [8–10] and has close
correlation with ventricular volume [11,12]. Generally, EI �
0.30 is regarded as ventriculomegaly in guidelines of
hydrocephalus [9,10].
2.4. Groups segregation

According to the EI values, subjects with normal cognition
were stratified into two groups: those with ventriculomegaly
were defined as EI � 0.30 group and those without ventricu-
lomegaly as EI , 0.30 group. Neuropsychological scores,
brain structure volumes, [18F]FDG standardized uptake value
ratio (SUVR), [18F]florbetapir SUVR, CSFAb1–42, t-tau, and
p-tau were compared between the two groups.
2.5. Neuropsychological assessments

The neuropsychological assessments were performed
by certified raters using standardized ADNI protocols.
CDR, MMSE, MoCA, AD Assessment Scale-Cognition
(ADAS-Cog), neuropsychological battery, and ADNI-
Mem and ADNI-EF data sets used in this study were
obtained from the ADNI files “CDR.csv”, “MOCA.csv”,
“MMSE.csv”, “NEUROBAT.csv”, “ADASSCORES.csv”,
and “UWNPSYCHSUM_04_22_16.csv”, respectively.
ADNI-Mem and ADNI-EF are validated composite mem-
ory and executive scores, respectively, derived using data
from the ADNI neuropsychological battery [13,14].
The Rey Auditory Verbal Learning Test (AVLT),
ADAS-Cog, MMSE, and Logical Memory tests were
analyzed using a modern psychometric approach to
obtain the composite memory score (ADNI-Mem) [13].
Based on WAIS-R Digit Symbol Substitution, Digit
Span Backwards, Trails A and B, Category Fluency,
and Clock Drawing, ADNI-EF, the composite executive
function measure, appears to be a useful composite
measure of executive function in MCI, as good as or
better than any of its composite parts [14]. Lower
ADNI-Mem and ADNI-EF scores reflect a poorer perfor-
mance in memory and executive function, respectively.
The details of the ADNI protocols for the neuropsycho-
logical assessments and the methods for developing
the ADNI-Mem and ADNI-EF can be found at www.
adni-info.org (accessed January 2017).
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2.6. CSF data

CSF Ab1–42, t-tau, and p-tau at threonine 181 were
measured by using Innogenetics (INNO-BIA AlzBio3)
immunoassay kit–based reagents in the multiplex xMAPLu-
minex platform (Luminex) as previously described [15]. The
CSF data used in this study were obtained from the ADNI
files “UPENNBIOMK5-8.csv”. Further details of ADNI
methods for CSF acquisition and measurements and quality
control procedures can be found at www.adni-info.org (ac-
cessed January 2017). CSF Ab1–42 concentration �192 pg/
mL was regarded as having AD risk [15].
2.7. Neuroimaging data

The neuroimaging data, including structural volume in
MRI, cerebral glucose metabolism in [18F]FDG PET, and
cortical Ab burden using [18F]florbetapir PET SUVRs were
obtained from the ADNI file “UCSFFSL_11_02_15”,
“UCSFFSX51_11_02_15_V2”, “UCD_ADNI2_WMH_10_
26_15”, “UCBERKELEYFDG_07_30_15.csv”, and
“UCBERKELEYAV45_06_15_16.csv”, respectively. The
neuroimaging techniques used by ADNI have been reported
previously [16–18]. Briefly, cortical reconstruction and
volumetric segmentation were performed with the
Freesurfer image analysis suite, which is documented and
freely available for download online (http://surfer.nmr.mgh.
harvard.edu). Each PET scan is coregistered to the
corresponding MRI, and the mean isotope uptake within
the cortical and reference regions is calculated. To
investigate the regional cerebral glucose metabolism and
Ab deposition, [18F]FDG SUVR values from five brain
regions (left angular gyrus, right angular gyrus, bilateral
posterior cingulum gyrus, left temporal gyrus, and right
temporal gyrus) and [18F]florbetapir SUVR values from
four regions (frontal, cingulate, parietal, and temporal)
were analyzed, respectively. Further details regarding
ADNI image acquisition and processing can be found at
www.adni-info.org/methods. (accessed January 2017).
Table 1

Demographics of subjects

Characteristics EI � 0.30 EI , 0.30 P value

Numbers 96 329

Percentage (%) 22.59 77.41

Age (years) 76.0 6 5.6 72.0 6 6.4 ,.001*

Males, n (%) 68 (70.8) 135 (41.0) ,.001*

Education, year 16.8 6 2.5 16.4 6 2.6 .21

APOE ε4 n (%) .44

2 2 (2.1) 6 (1.8)

1 23 (24) 101 (30.7)

0 71 (74.0) 222 (67.5)

*Statistically significant.
2.8. Statistical methods

Statistical analyzes were performed using the R Statisti-
cal Software Package, version 3.3.017. Demographic data
(age, gender, educational level, and apolipoprotein E
[APOE] status), cognitive scores, MR volumes, SUVR and
CSF biomarker values were summarized. Between the two
groups, gender and APOE status were compared using chi
square tests for categorical variables, while age, educational
level, cognitive scores, MR volumes, SUVR, and CSF
biomarker values were compared using the independent
samples t-test for continuous variables. Statistical models
(cognitive scores, MR volumes, SUVR, and CSF biomarker
values) were corrected for age, gender, education, and APOE
ε4 status using analysis of variance. P, .05 was adopted and
regarded to the significance.
Downloaded for Anonymous User (n/a) at University of Southern California
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3. Results

3.1. Demographic data of the subjects

Out of the 425 cognitively normal individuals, 96
(22.5%) had ventriculomegaly. The individuals with ventri-
culomegaly were older (mean age 6 standard deviation)
(76.0 6 5.6 vs. 72.0 6 6.4 years, P , .001) and had more
males (70.8% vs. 41.0%, P, .001) as compared to the group
without ventriculomegaly (Table 1). There was no signifi-
cant difference in the education level and the number of
APOE ε4 carriers between the two groups.

3.2. Measurement of diameters of frontal horn and skull

The mean diameters of frontal horn and skull in the group
with ventriculomegaly compared to the group without ven-
triculomegaly were 45.13 6 2.89 mm versus
36.91 6 3.42 mm, P , .01 and 139.18 6 3.27 mm versus
140.97 6 3.30 mm, P , .01, respectively. The maximum
EI in group with ventriculomegaly was 0.43, and in the
group without ventriculomegaly, EI , 0.30 was 0.29. The
mean EI in the two groups were 0.32 6 0.02 and
0.26 6 0.02, respectively.

3.3. Neuropsychological scores

Participants with ventriculomegaly performed worse in
the domains of global, attention, delayed recall memory
and executive function on the neuropsychological assess-
ments compared to those without ventriculomegaly. For
example, the mean neuropsychological scores measuring
global cognition in MoCA were 24.83 6 2.72 versus
25.88 6 2.52 (P , .001). In the neuropsychological assess-
ment measuring the executive function, participants with
ventriculomegaly took longer time (worse performance) to
finish the Trail Making Test part B than those without ventri-
culomegaly. In the assessment measuring memory, partici-
pants with ventriculomegaly had worse performance than
those without ventriculomegaly in the Logical Memory
Test and Rey AVLT. These findings were also consistent us-
ing the ADNI-Mem and ADNI-EF scores. In the assess-
ments that measured language, there were no significant
differences in the category fluency animals and Boston
 - SCELC from ClinicalKey.com by Elsevier on December 03, 2018.
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Table 2

Neuropsychological scores

Scale EI � 0.30 (n 5 96) EI , 0.30 (n 5 329) P value

MoCA 24.83 6 2.72 25.88 6 2.52 ,.001*

MMSE 28.59 6 1.46 29.08 6 1.13 ,.001*

ADAS-Cog11 6.93 6 3.16 5.30 6 2.79 ,.001*

Clock score 4.54 6 0.75 4.73 6 0.63 .01*

BNTSpont 28.19 6 1.97 28.20 6 2.28 .98

CATANIMSC 20.03 6 4.98 21.14 6 5.31 .06

TRAA 35.77 6 17.86 33.27 6 24.41 .35

TRAB 90.44 6 45.35 77.00 6 38.01 .003*

LIMM Total 13.02 6 4.23 14.91 6 3.78 .003*

RAVLT-immediate 4.05 6 10.52 4.48 6 10.99 ,.001*

ADNI-Mem 0.84 6 0.68 1.17 6 0.69 ,.001*

ADNI-EF 0.62 6 0.77 0.89 6 0.73 ,.001*

*Statistically significant.
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naming tests. There were also no significant differences in
the Trail Making Test part A scores (Table 2).

3.4. Volumes of brain structures

Compared to the group without ventriculomegaly, the in-
dividuals in ventriculomegaly group had substantially larger
intracranial volume (cc) (1465.95 6 111.32 vs.
1393.34 6 124.06, P , .001), larger CSF volume
(379.43 6 45.06 vs. 321.06 6 44.80, P , .001) and larger
gray matter volumes (607.19 6 42.08 vs. 590.26 6 50.95,
P 5 .008). The volumes (mm3) of some structures in the
Table 3

Volume of specific brain structures

Structure

Volume (mean 6

EI � 0.30 (n 5 4

CC_ANTERIOR 745.48 6 143.6

CC_CENTRAL 338.17 6 55.57

CC_MID_ANTERIOR 343.90 6 77.86

CC_MID_POSTERIOR 314.00 6 65.39

CC_POSTERIOR 895.81 6 149.2

L _ENTORHINAL 1909.55 6 332.5

R _ENTORHINAL 1747.26 6 335.0

L _PARACENTRAL 3261.90 6 509.8

R _PARACENTRAL 3642.02 6 546.1

L _ROSTRAL ANTERIOR CINGULATE 2653.64 6 480.9

R _ROSTRAL ANTERIOR CINGULATE 2122.62 6 448.4

L _CAUDAL ANTERIOR CINGULATE 2299.50 6 382.7

R _CAUDAL ANTERIOR CINGULATE 2016.67 6 460.2

L_POSTERIOR CINGULATE 2975.93 6 431.0

R _POSTERIOR CINGULATE 3031.24 6 402.6

L _ISTHMUS CINGULATE 2530.17 6 419.0

R _ISTHMUS CINGULATE 2313.07 6 335.1

L_CAUDATE 3487.02 6 528.3

R_CAUDATE 3608.76 6 573.0

L_HIPPO 3519.77 6 460.2

R_HIPPO 3640.09 6 499.5

L_CHOROID_PLEXUS 2079.14 6 399.9

R_CHOROID_PLEXUS 2513.24 6 443.2

L_INF_LAT_VENT 1195.57 6 709.4

R_INF_LAT_VENT 912.90 6 598.9

Abbreviations: CC, corpus callosum; HIPPO, hippocampus; INF, inferior; L, left;

*Statistically significant.
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group with ventriculomegaly were substantially different
compared with those in the group without ventriculomegaly.
Concerning specific structures, some were significantly
bigger, such as bilateral caudate, paracentral gyrus, rostral
anterior cingulate gyrus, choroid plexus, and inferior LVs,
whereas others were significantly smaller, such as central
part of corpus callosum (CC) and hippocampus gyrus. There
was no significant difference in the volumes of entorhinal
gyrus, anterior and posterior CC, caudal anterior cingulate,
and posterior cingulate (Table 3 and Fig. 1).

3.5. FDG uptake

The ventriculomegaly group had substantially lower [18F]
FDG SUVR in bilateral angular gyrus and posterior cingu-
late compared to the group without ventriculomegaly, for
example, left angular gyrus 1.28 6 0.14 versus
1.33 6 0.14 (P 5 .004). There was no significant difference
in the [18F]FDG SUVR in the temporal regions between the
two groups (Table 4).

3.6. Biomarkers of Ab and tau pathologies

The group with ventriculomegaly had higher [18F]florbe-
tapir SUVR in the frontal and parietal regions compared to
the group without ventriculomegaly. There was no signifi-
cant difference in the [18F]florbetapir SUVR in the cingulate
and temporal regions between the two groups. The
SD) (mm3)

P value2) EI , 0.30 (n 5 179)

0 773.56 6 138.27 .22

372.22 6 66.33 .001*

377.56 6 71.43 .005*

348.10 6 78.52 .007*

3 912.93 6 150.72 .49

9 1974.13 6 394.60 .31

1 1862.46 6 375.59 .06

4 3061.12 6 484.20 .011*

4 3412.67 6 559.98 .0002*

0 2386.81 6 453.94 ,.001*

4 1911.63 6 441.98 .006*

2 2228.93 6 396.65 .28

3 1998.87 6 403.93 .80

4 2922.83 6 431.24 .47

2 2889.69 6 386.92 .06

9 2357.06 6 404.41 .01*

9 2172.47 6 360.28 .02*

9 3290.77 6 509.44 .03*

0 3372.68 6 555.31 .01*

5 3741.25 6 416.66 .002*

1 3798.25 6 457.51 .03*

5 1746.74 6 351.68 ,.001*

2 2052.38 6 417.55 ,.001*

4 553.39 6 399.36 ,.001*

0 480.80 6 394.13 ,.001*

LAT, lateral;MID, middle; R, right; VENT, ventricles; SD, standard deviation.

 - SCELC from ClinicalKey.com by Elsevier on December 03, 2018.
opyright ©2018. Elsevier Inc. All rights reserved.



Fig. 1. Brain structure volumes. (A) corpus callosum; (B) cingulate gyrus; (C) entorhinal, paracentral, caudate, hippocampus gyrus; and (D) choroid plexus and

inferior lateral ventricles. Abbreviations: ANTE, anterior; CAUD, caudal; CC, corpus callosum; CING, cingulate; HIPPO, hippocampus; L, left; LAT, lateral;

MID, middle; R, right; ROSTR, rostral; POST, posterior; VENT, ventricles.

Table 4

FDG uptake analysis

Brain region

FDG SUVR

P value

EI � 0.30

(n 5 75)

EI , 0.30

(n 5 245)

Angular left 1.28 6 0.14 1.33 6 0.14 .004*

Angular right 1.28 6 0.14 1.33 6 0.12 .005*

Cingulumpost bilateral 1.33 6 0.14 1.43 6 0.14 ,.001*

Temporal left 1.26 6 0.13 1.27 6 0.12 .36

Temporal right 1.24 6 0.11 1.25 6 0.11 .38

Abbreviations: Cingulumpost bilateral, bilateral posterior cingulate cor-

tex; FDG, fluorodeoxyglucose.

*Statistically significant.
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ventriculomegaly group had lower CSF Ab1–42 level. There
was no significant difference in CSF t-tau and p-tau values
between the two groups. There was higher percentage of
subjects with CSFAb1–42 � 192 pg/mL in ventriculomegaly
group than that without ventriculomegaly, 60.6% versus
38.0% (Table 5).
4. Discussion

In this study, we found that cognitively normal individ-
uals with ventriculomegaly had worse delayed memory
and executive function, more gray matter and CSF volumes,
disproportionately changed volumes of brain structures, less
 - SCELC from ClinicalKey.com by Elsevier on December 03, 2018.
opyright ©2018. Elsevier Inc. All rights reserved.



Table 5

F18-PET-AV45 SUVR, CSF Ab, and tau biomarkers

Brain region

Value

P valueEI � 0.30 EI , 0.30

FRONTAL 1.33 6 0.28 (n 5 92) 1.27 6 0.25 (n 5 302) .04*

CINGULATE 1.44 6 0.28 (n 5 92) 1.40 6 0.27 (n 5 302) .12

PARIETAL 1.35 6 0.29 (n 5 92) 1.29 6 0.25 (n 5 302) .03*

TEMPORAL 1.24 6 0.23 (n 5 92) 1.21 6 0.22 (n 5 302) .20

CSF Ab1–42 (pg/mL) 177.08 6 48.57 (n 5 62) 203.03 6 49.96 (n 5 229) ,.001*

CSF Ab1–42 �192 pg/mL; n (%) 40 (60.6) 87 (38.0) ,.001*

CSF Tau(pg/mL) 67.38 6 29.36 (n 5 59) 69.77 6 35.44 (n 5 223) .49

CSF P-Tau(pg/mL) 39.72 6 19.68 (n 5 62) 37.21 6 20.47 (n 5 228) .999

Abbreviations: Ab, amyloid b; CSF, cerebrospinal fluid; SUVR, standardized uptake value ratio.

*Statistically significant.
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FDG SUVR and more Ab deposition in the neocortex with
specific distribution pattern, and less CSF Ab1–42 level
with unchanged CSF tau, compared to the cognitively
normal individuals without ventriculomegaly. Until now,
the characteristics of neuropsychological and biomarker
profiles of ventriculomegaly in cognitively normal elderly
individuals and its implication are poorly understood. Our
findings have shed light on this issue showing for the first
time that cognitively normal individuals with ventriculome-
galy shown neuropsychological and multiple biomarker ab-
normalities that can be identified before clear clinical
presentation.

EI is an indicator of the enlargement of LVs and tradition-
ally used in the diagnosis of normal pressure hydrocephalus
(NPH). Idiopathic NPH (iNPH) was first described by
Hakim and Adams in 1965, with a typical clinical triad of
gait disturbance, cognitive impairment, and urinary inconti-
nence in the elderly patients who showed the association
with the enlargement of the cerebral ventricular system
and good response to shunt surgery [19]. Some researchers
found that EI more than 0.30 should be indicative of ventri-
culomegaly [7]. Following this criterion, our demographics
data showed that 22.5% of cognitively normal individuals
in the selected ADNI cohort had ventriculomegaly. Only
gender and age were significantly different between the
two groups. Individuals with asymptomatic ventriculome-
galy tended to be older (76.0 6 5.6) and of male gender
(70.8%). Although ventriculomegaly is common in both
AD and NPH, the male predominance has been observed
in NPH epidemiological study [20,21], whereas gender
predominance in AD is uncertain [22,23] even with female
predominance is reported in AD studies [24,25]. Hence,
our findings suggested that male cognitively intact elders
with ventriculomegaly concord more with the early
spectrum of iNPH although this needs to be confirmed in
future longitudinal studies.

MoCA, MMSE, ADAS-Cog, and Clock Drawing scores
reflect global cognitive function. The scores in these scales
all suggested that the subjects with ventriculomegaly had
consistently worse cognitive functions compared to those
without ventriculomegaly although they were still cogni-
Downloaded for Anonymous User (n/a) at University of Southern California
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tively normal. This finding is consistent with the scores of
Logical Memory Test and Rey AVLT. Furthermore, the
scores of ADNI-Mem and ADNI-EF also supported the
framework that memory and executive function domains
of individuals with asymptomatic ventriculomegaly were
impaired although they remained clinically cognitively
normal. Hence, subclinical memory and executive dysfunc-
tion may be the earliest neuropsychological impairments,
which characterize asymptomatic ventriculomegaly.

The structural volume differences in our study showed
certain characteristics that were unique for asymptomatic
ventriculomegaly. The hippocampal gyrus volume and the
volumes of the CC were significantly smaller in the individ-
uals with asymptomatic ventriculomegaly than individuals
without ventriculomegaly. Atrophy of these structures is re-
garded as a typical finding in AD. However, our findings
showed that the gray matter volumes in ventriculomegaly
group were significantly larger. As the increased ventricular
volume in AD is commonly caused by the loss of brain tissue
or brain atrophy [26,27], this enlargement of gray matter
makes brain atrophy as the underlying cause for
ventriculomegaly in cognitively normal individuals less
likely. In this study, we also found some unique
phenomena such as smaller middle part of CC, posterior
cingulate gyrus and entorhinal gyrus without significant
difference, and the larger anterior cingulate volume, while
they are uncommon in early AD, where the most involved
part of CC should be the anterior [28] or posterior/splenium
region [29,30,31], the posterior cingulate gyrus and
entorhinal gyrus [32,33] are often involved and the
anterior cingulate volume is often unaffected [27]. In addi-
tion, we observed that the bilateral caudate, paracentral gy-
rus, and isthmus cingulate volumes were also larger in these
individuals. These features, at least, make the manifestation
unlike typical AD. As these enlarged brain structures were
located near the LVs: caudate is medial to the LV; paracen-
tral gyrus is superior and medial to the LV; and isthmus
cingulate is medial to LV, we speculate that the enlargement
of these structures may be caused by increase of water con-
tent or some kind of compensation mechanism, rather than
brain atrophy [34,35]. Nevertheless, the decreased
 - SCELC from ClinicalKey.com by Elsevier on December 03, 2018.
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hippocampal volume is not consistent with our speculation
as this structure is also near the LV though atrophy of
hippocampus has been observed in NPH [36]. We suppose
that this can be due to the position of this structure, which
is inferior and medial to the LV, while the previously
described brain structures with increased volumes are supe-
rior and medial to the LV. Perhaps, the decreased hippocam-
pal volume is still an indicator of AD. As such, this finding of
disproportionately changed brain structure volumes may
further characterize the asymptomatic ventriculomegaly
framework.

In iNPH, the disproportionate enlargement of subarach-
noid space (DESH) was observed by Hajime in 1998 and
was proposed as a preclinical state of iNPH in an epidemio-
logical study [37]. Both the convexity and the medial sub-
arachnoid spaces were significantly smaller in most of the
patients with iNPH than those with AD while the sylvian
fissure was larger in iNPH than in AD [38]. However, the un-
derlying pathophysiology of DESH is unknown. Our finding
of a disproportionate enlargement of the brain structures is
consistent with the proposed framework of DESH. Essen-
tially, brain regions with enlarged subarachnoid space in
NPH have structures with decreased volumes (hippocam-
pus), and brain regions with decreased area (tight convexity)
have structures with increased volume (paracentral gyrus
and caudate). Significantly larger inferior LVs and choroid
plexus may also suggest NPH tendency, and the enlargement
of inferior LVs may exert pressure on the medial part of tem-
poral lobe, resulting in the decreased hippocampal volume.
The enlargement of LVs can also exert pressure on the CC,
which results in the reduction of the volume of CC, a com-
mon MRI finding in iNPH [39]. As iNPH has been reported
frequently in comorbidity with AD [40–42], our NPH-like
structural findings further support our claim that these indi-
viduals with asymptomatic ventriculomegaly may be an
early signature of AD and/or preclinical spectrum of iNPH.

The caudate plays a key role in supporting the planning
and execution of behavior needed to achieve complex goals
[43]. In preclinical familial AD studies, the volumes of the
both caudates have been shown to be decreased [44]. There-
fore, our finding of the enlargement of bilateral caudates
cannot be explained by the AD pathophysiology. However,
this finding cannot be completely explained by NPH patho-
physiology, either, as one NPH study has reported smaller
caudate volume in NPH compared with normal control
[45]. Hence, while we propose that the disproportionate
enlargement of brain structural volumes characterizes
asymptomatic ventriculomegaly, future longitudinal studies
are needed to test this hypothesis and further elucidate the
underlying pathophysiology of this observed phenomenon.

We found that the [18F]FDG SUVR was decreased in the
bilateral angular gyri and posterior cingulate gyri of the in-
dividuals with asymptomatic ventriculomegaly compared
to those without ventriculomegaly. As hypometabolism in
posterior cingulate was reported to be obvious [46], this
metabolic signature indicates that this population with ven-
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triculomegaly has some features of AD. However, there was
no significant difference in [18F]FDG SUVR in temporal gy-
rus between the two groups. It has been reported that medial
temporal regions were also often affected in AD [47]. The
decreased [18F]FDG uptake in both the angular and posterior
cingulate regions, not in the temporal area, in the group with
ventriculomegaly made this biomarker profile look unlike
typical AD.

We also found that [18F]florbetapir SUVR was increased
in the neocortex (frontal and parietal), and the CSF Ab1–42
level was decreased in the individuals with asymptomatic
ventriculomegaly compared to those without ventriculome-
galy. This finding is consistent with the Ab biomarker signa-
ture of AD [16]. Taking CSFAb1–42� 192 pg/mL as a cutoff
value for having AD risk [15], asymptomatic ventriculome-
galy group had higher risk of AD according to the recent defi-
nition of asymptomatic at AD risk [48]. CSF biomarker
changes are evident over two decades before the individual’s
expected age at symptom onset, as determined by their
parental age at onset [49]. Reduced concentrations of CSF
Ab1–42 and increased concentrations of CSF tau were de-
tected at 25 and 15 years from the expected symptom onset,
respectively. However, there was no significant difference in
the [18F]florbetapir SUVR in cingulate and temporal areas
between the groups in our study, which is not consistent
with the typical AD feature [50,51]. CSF t-tau and p-tau
had no significant difference either. Unsurprisingly, this
phenomenon can be found in AD as decrease of Ab in CSF
can happen earlier than increased level of tau. Meanwhile,
this feature is also in concordance with iNPH as total
secreted amyloid precursor protein (APP), soluble APP a
and Ab1–42 have been shown to decrease in the CSF of
NPH patients without change of t-tau or p-tau [52]. There-
fore, Ab and tau biomarker features of asymptomatic ventri-
culomegaly could be early AD or preclinical NPH spectrum.

Altogether, asymptomatic individuals with ventriculome-
galy are ostensibly cognitively normal, however, they have
worse memory and execution compared with those with
normal ventricles, therefore, special attention should be
paid to these individuals. This study showed that asymptom-
atic individuals with ventriculomegaly have smaller hippo-
campal volumes, less FDG uptake, more Ab deposition in
the neocortex, and less CSFAb1–42 level, which are charac-
teristics of preclinical AD [16]. However, relatively bigger
posterior cingulate gyrus and uninvolved entorhinal gyrus
are not supportive of preclinical AD. Besides these, interest-
ingly, it has also been found that these specific individuals
have bigger volumes of gray matter, paracentral gyrus, and
caudate with unchanged CSF tau levels. The pattern of
MRI structural volumes implies the disproportionate change
of brain structures, which concords with DESH feature of
iNPH. Some researchers suggest that less CSF Ab1–42 level
and unchanged CSF tau levels may be features of iNPH
[52]. Therefore, cognitively normal individuals with ventri-
culomegaly may constitute a unique group of people. Here,
we just reported this interesting finding. There is limitation
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in this study. The self-selected group of participants in the
ADNI limits the generalizability of our results. The
follow-up is not long enough. Our findings will require
further validation in a larger population-based longitudinal
study and a longer follow-up. Furthermore, future work
should be carried out to answer questions such as “what trig-
gers this phenomenon?”, “what is the underlying pathophys-
iologic process?”, “How about the prognosis?”, and “Are
there interacting mechanisms between AD and NPH?”
5. Conclusions

Ventriculomegaly is common among cognitively normal
individuals. The characterization of the neuropsychological
and biomarker profiles in these individuals implies that it
may be an early imaging signature of preclinical AD and/
or have comorbidity of iNPH and more research should be
performed.
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RESEARCH IN CONTEXT

1. Systematic review: Quite a few research studies have
suggested that ventriculomegaly in mild cognitive
impairment (MCI) and Alzheimer’s disease (AD) is
possibly attributed to the brain atrophy. In clinical
practice, ventriculomegaly can be more and more
frequently observed in asymptomatic subjects, how-
ever, the prevalence of the neuropsychiatric and
biomarker features of ventriculomegaly in cogni-
tively normal subjects is unclear.

2. Interpretation: Ventriculomegaly in cognitively
normal subjects is not uncommon, and overall neuro-
psychological and biomarker profiles imply a kind of
atypical preclinical AD or have comorbidity of pre-
clinical iNPH.

3. Future directions: Other plasma or cerebrospinal
fluid biomarkers should be investigated to see their
relationships with ventriculomegaly. In ADNI, the
cognitively normal control group might contain
different types of preclinical comorbidities of other
brain disorders. This should be taken into consider-
ation to understand if there are interacting mecha-
nisms between underlying neurodegenerative
disorders and ventriculomegaly.
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